
Animating Planetary Motion

Animating planetary orbits is easier than understanding how these orbits result
from a central force. In this document, the animation formulae are presented first,
but in such away that the central forcemay be found by continuing the calculation.
The opposite approach is often taken. See for example

https://physics.stackexchange.com/questions/353239/elliptic‐orbit‐solution‐based‐
on‐initial‐conditions.

Circular Orbits

Let r be the radius and let T be the period. Then the animation is given by[
x(t)
y(t)

]
=

[
r cos 2πt

T
r sin 2πt

T

]
where t is the elapsed time. Continuing the calculation,[

x′′(t)
y′′(t)

]
= −

(
2π

T

)2 [
x(t)
y(t)

]
showing that the acceleration is central. The force law is apparently linear, but

since r is constant, the acceleration is also consistent with the inverse square law.

If the right side is compared with −GM
r3

[
x(t)
y(t)

]
, it is found that r3

T 2 = GM
4π2 .

Eliptical Orbits

Leta, b and cbe the semi‐axes anddistance to foci of the ellipse, wherea2 = b2+c2.
Parametrize the ellipse so that one focus is at the origin:

x(α) = a cosα+ c

y(α) = b sinα

where α ∈ [0, 2π]. Note that α is not the polar angle of the point (x(α), y(α)),
but is the angle from the center of the ellipse.
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Swept Area

LetA(α) be the area swept out. The rate of change of area with respect to α is:

A′(α) =
1

2
det

[
x(α) x′(α)
y(α) y′(α)

]
=

1

2
(ab+ bc cosα)

Integrate arranging thatA(0) = 0.

A(α) =
1

2
(abα+ bc sinα) .

Notice for example thatA(π/2) is the sumof the area of a triangle and a quarter
the area of the ellipse.

Inverse of the Area Function

It will be necessary to calculate α = A−1(S) where S is a given amount of swept
area. To this end, let [pi, qi] be a sequence of brackets for α, using the fact that
A(α) is an increasing function. To find the inverse for any S, let

[p0, q0] =

[
2πfloor

(
S

πab

)
, 2πceil

(
S

πab

)]
which will simply be [0, 2π]when S ∈ (0, πab). Then, according to the bisection

method, iterate

αi =
pi + qi

2

[pi+1, qi+1] =

{
[pi, αi] ifA(αi) > S

[αi, qi] ifA(αi) < S

so that αi → α until qi − pi is smaller than the desired tolerance.

Parametrization by Time

For elapsed time t and period T , the fraction of the time elapsed must equal the
fraction of the area swept.

t

T
=

A(α)

πab

Define

f(t) = α = A−1

(
πab

T
t

)
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The animation is then given by

x(t) = a cos f(t) + c

y(t) = b sin f(t).

The Changing Radius

Let r(t) be the distance from the origin to the point (x(t), y(t)) and use the relation
b2 = a2 − c2.

(r(t))
2
= (x(t))

2
+ (y(t))

2

= (a cos f(t) + c)
2
+ b2 sin2 f(t)

= a2 cos2 f(t) + 2ac cos f(t) + c2 +
(
a2 − c2

)
sin2 f(t)

= (a+ c cos f(t))2 .

Therefore r(t) = a+ c cos f(t).

Derivatives of f

Write
1

2
(abf(t) + bc sin f(t)) = A(f(t)) =

πab

T
t

and differentiate implicitly.

f ′(t) =
2π

T

1

(1 + c
a cos f(t))

.

The second deriviative is then

f ′′(t) =

(
2π

T

)2 c
a sin f(t)

(1 + c
a cos f(t))

3
.

Velocity [
x′(t)
y′(t)

]
=

[
−a sin f(t)
b cos f(t)

]
f ′(t).
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Acceleration[
x′′(t)
y′′(t)

]
=

[
−a sin f(t)
b cos f(t)

]
f ′′(t) +

[
−a cos f(t)
−b sin f(t)

]
(f ′(t))

2

= −
(
2π

T

)2
1

(1 + c
a cos f(t))

3

[
x(t)
y(t)

]
= −

(
2π

T

)2
a3

(r(t))
3

[
x(t)
y(t)

]
.

If this is compared with −GM
(r(t))3

[
x(t)
y(t)

]
it is found that a3

T 2 = GM
4π2

For example:
Msun = 1.98847× 1030kg
G = 6.67430× 10−11Nm^2/kg^2
aearth = 149.60× 109m
Tearth = 31558150 seconds

Initial Conditions

f(0) = 0

f ′(0) =
2π

T

1

1 + c
a

x(0) = a+ c

y(0) = 0

x′(0) = 0

y′(0) = b
2π

T

1

1 + c
a

Notes

Inverting the area formula is Kepler’s anomaly method in disguise, but the area
formula is more general. For any parametrized curve (x(α), y(α)) that is oriented
counterclockwise relative to the origin, the area swept out satisfies

A′(α) =
1

2
det

[
x(α) x′(α)
y(α) y′(α)

]
.

This may be proven directly or as a special case of Green’s theorem. It may
be also be shown that A′(α) is constant if and only if (x(α), y(α)) is parallel to
(x′′(α), y′′(α)). In the special case when the parameter is time,
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A′(t) =
1

2
det

[
x(t) x′(t)
y(t) y′(t)

]
so that sweeping equal areas in equal times is equivalent to a central accelera‐

tion. When mass is considered and z(t) ≡ 0, the angular momemtum is

L = m

(
0, 0, det

[
x(t) x′(t)
y(t) y′(t)

])
= (0, 0, 2mA′(t))

In the case of the elliptical orbit, using the formulas for position and velocity,
the derivative of area with respect to time is

A′(t) =
1

2
det

[
a cos f(t) + c −a sin f(t)

b sin f(t) b cos f(t)

]
2π

T

1

(1 + c
a cos f(t))

=
πab

T

as expected.

Elliptical Orbits with Precession

In keeping with the theme of starting with the animation, and later finding the
force, seek a solution of the form[

X(t)
Y (t)

]
=

[
cos g(t) − sin g(t)
sin g(t) cos g(t)

] [
x(t)
y(t)

]
,

where the previously found solution (x(t), y(t)) is rotated by the angle g(t).
Then [

X ′(t)
Y ′(t)

]
=

[
cos g(t) − sin g(t)
sin g(t) cos g(t)

] [
x′(t)− y(t)g′(t)
y′(t) + x(t)g′(t)

]
The swept area is given by

A′(t) =
1

2
det

[
X(t) X ′(t)
Y (t) Y ′(t)

]
=

πab

T
+

1

2
((x(t))2 + (y(t))2)g′(t).

In order to sweep equal areas in equal times, letH be a constant such that

g′(t) =
H

(x(t))
2
+ (y(t))

2

Recalling that r(t) = a+ c cos f(t), write
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g′(t) =
H

(a+ c cos f(t))2

To find g(t), let I =
∫

1
(a+c cos f(t))2 dt. Substitute u = f(t) to obtain

I =
T

2πa

∫
1

a+ c cosu
du

Then using Weierstrass substitutionw = tan u
2 ,

I =
T

2πa

∫
1

a+ c 1−w2

1+w2

2

1 + w2
dw

=
T

πa
√
(a+ c)(a− c)

arctan
(√

a− c

a+ c
w

)
Replacearctan(k tan())witharctanktan (), theunique function that agreeswith

arctan(k tan()) on (−π
2 ,

π
2 ) and has derivative k

cos2 x+k2 sin2 x on the whole of R.

Here k =
√

a−c
a+c . This gives the formula for g(t).

g(t) = H
T

πab
arctanktan

(
f(t)

2

)
It remains to interpret the constantH . The function f maps whole multiples of

the period T to whole multiples of 2π, and the function arctanktan () acts as the
identity on whole multiples of π.

f(nT ) = 2πn

g(nT ) = H
T

πab
arctanktan (πn)

= H
T

πab
πn

On the other hand, if the solution (X(t), Y (t)) has period P , then g(P ) = 2π.
This permits solving forH in the case that P is a whole multiple of T .

H =
2πab

P

This completes the animation formula, where P is the (rather large) period of
precession, a more intuitive input parameter thanH .

By writingH in terms of P , the rate of change of area becomes

A′(t) =
πab

T
+

πab

P
.

If the animation without precession were run for total time nT , the area would
be traced out n times, but at the rate above, it is traced onemore time, suggesting
that n+ 1 is the winding number of the path.

glensherman.neocities.org 6



Acceleration

Tomake the calculation less cluttered, drop the (t). Differentiating the velocity, the
acceleration may be written[

X ′′

Y ′′

]
=

[
cos g − sin g
sin g cos g

]{[
x′′

y′′

]
+

[
E
F

]}
where

E = −yg′′ − 2y′g′ − x(g′)2

F = xg′′ + 2x′g′ − y(g′)2.

Now recall that g′ and hence g′′ may be written in terms of r.

g′ =
H

x2 + y2
=

H

r2

g′′ =
−2H(xx′ + yy′)

(x2 + y2)
2 =

−2H(xx′ + yy′)

r4
.

This leads to

E =
1

r4
Hx

(
−4

πab

T
−H

)
F =

1

r4
Hy

(
−4

πab

T
−H

)
.

It follows that[
X ′′(t)
Y ′′(t)

]
= −

((
2π

T

)2
a3

(r(t))3
+

1

(r(t))4
H

(
4
πab

T
+H

))[
X(t)
Y (t)

]
.

The magnitude of the central force has the form inverse square plus inverse
cube.

Initial Conditions

g(0) = 0

g′(0) =
H

(a+ c)2

X(0) = x(0)

Y (0) = y(0)

X ′(0) = 0

Y ′(0) = y′(0) + x(0)g′(0)
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Sun Centered Elliptical Orbits

It is perhaps worth mentioning the animation[
x(t)
y(t)

]
=

[
a cos 2πt

T
b sin 2πt

T

]
which does sweep equal areas in equal times.
It follows that [

x′′(t)
y′′(t)

]
= −

(
2π

T

)2 [
a cos 2πt

T
b sin 2πt

T

]
showing that the acceleration is central and the force law is linear.

glensherman.neocities.org 8


